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SUMMARY

Transformation matrices from one joint axis system to another are used in the
control of robot arms and in the passage of sensor information along the arms. The
Denavit-Hartenberg parameters, which precisely describe the relative location of one
joint axis system with respect to another, define the elements in these matrices.
This paper presents a vector-algebra approach to extract the Denavit-Hartenberg
parameters for any assembled robot arm.

Measurement data needed in the parameter-extraction process can be generated by
varying the joint angles in a robot arm and measuring the location of a point on the
robot hand (or other extension). The Denavit-Hartenberg parameters relating consecu-
tive joint axis systems are then calculated with these data. The parameter-
extraction method appears promising as a useful tool for researchers and may possibly
be a useful industrial procedure.

INTRODUCTION

Researchers are currently trying to improve the control and design of robot arms
and to add a certain degree of autonomy for future space applications, such as the
service and repair of satellites (ref. 1). Commercially available (or prototype)
robot arms are used to verify concepts, validate mathematical models, and realize
operational problems. However, a difficulty arises in that parameters in the mathe-
matical equations necessary to describe these arms are not always available or the
supplied parameters are not sufficiently accurate for end-point control.

If an operator remotely controls the hand of a robot arm by commanding transla-
tional and rotational rates about the hand axis system, then these rates must be
resolved mathematically into joint rates along the arm to effect these commands
(resolved-rate control, ref. 2). This resolution depends on the location of the
joints relative to each other. These locations are usually not available and are
difficult to measure for assembled commercially available robot arms. But, in stud-
ies involving the control of these arms, this information is required.

Because researchers often use robot arms in a manner other than that for which
they were originally intended (for example, some robot arms were not originally
intended to be controlled in a teleoperator mode by resolved rate), necessary param-
eters are often not available for the requisite mathematical models. Moreover, cer-
tain parameters may represent proprietary information. Whatever the reason, there is
a definite need for an accurate method to extract these parameters without having to
disassemble the robot arms. Such a method may also prove useful in the extraction of
a new set of definitive parameters to allow resumed control of a misaligned or bent
robot arm, for example on a factory floor or in a space application of a rigid-body
manipulator; wvia industrial enhancements, such a method may be useful in the routine
factory calibration of robot arms.

The purpose of this paper is to develop a vector-algebra approach for calculat-
ing the relative joint geometry of an assembled robot arm. Specifically, the
Denavit-Hartenberg parameters (ref. 3), which completely characterize this geometry,
are calculated.
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SYMBOLS
homogeneous transformation matrix from coordinate system i to i - 1
_}
length of a,
common normal vector between 251 and Z4

vector from world coordinate system to center of circular trajectory of
point F about line of rotation for joint i

point on extension attached to robot hand
integer to indicate different axis systems and associated parameters
constant defined by equation (6)
integer argument used to label corresponding measurement data
vector from world coordinate system to general point on line of rotation for

joint i

3

vector from world coordinate system to point where A touches line of

rotation for joint i

_)
number of unit vectors ui(k) to be averaged
origin of joint i and world axis system, respectively
measured position vector in world coordinates to point F
_)

measured vector Pi associated with measurement data set k

point in three-dimensional space

position vector from origin of world coordinate system to origin of
coordinate system i

length of ;.; relative distance between coordinate systems i - 1
and i along Zi-1

vector along Z;_4 from origin of coordinate system i -1 to tail of gi
vector from world coordinate system to tail of wvector 31 (see fig. 8)

unit vector normal to plane of circular trajectory of point F and in
direction of rotational vector Wy

calculated unit vector ﬁi associated with measurement data set k

vector drawn from point on line of rotation for joint i +to point on line
of rotation for joint i + 1

vector v, with minimum length; normal vector between lines of rotation for
joints i and i + 1



X. axis directed along .common normal between Z;.q and Z;

i i
Xt ¥yrZy, world coordinate axes
XirYi0r24 coordinate along X5 Yi, and Zi. respectively
Xt Yo Zy, world coordinate along xw,- Yw’ and Zw' respectively
Y; axis directed to complete right-hand axis system with X; and Z;
Z; axis of rotation of joint i + 1
a, angle between Z;_4 and 2Z;, measured positively (as shown in fig. 3) about
positive X,
B. constant bias angle, which when summed with joint angle ei, vields joint
T .
+ angle ©;
6, joint angle with initial value corresponding to position of robot arm
* in figure 1
Gi(k) joint angle ei associated with data set k
Aei(k) incremental changes in joint angle ei(k)
1
ei joint angle between X._ , and X;, measured positively (as shown in fig. 3)
about positive Z;_,
Ki real variable in vector line equation
*
Ai value of xi which makes 31 normal to line of rotation of joint 1
Py radius of circular trajectory of point F about line of rotation for
joint i
. . . . > >
5. unit vector in direction of u, X u,
i i i+1
Z& rotational velocity of joint i
Mathematical notations:
U length of vector
. dot or scalar product
X cross or vector product
ANALYSIS

A robot arm with rotational joints is depicted in figure 1. As shown by the
inset of wrist motions in this figure, 94 corresponds to a rotation of the bottom
of the wrist assembly mounted at the end of the arm, whereas 96 directly rotates
and 65 tilts the cylindrical element (end effector) which is attached to the
wrist. In reality, a mechanism which opens and closes is attached to the wrist for



manipulating objects. The robot arm in figure 1 is used for illustration, but the
subsequent development is valid for any geometric configuration of robot arm.

Suppose the exact location and orientation of each joint axis system of the
robot arm in figure 1 are not known. The objective in this analysis is to develop a
method to determine the parameters which establish the geometric relationships among
the joint axis systems for an assembled robot arm. This objective is accomplished by
moving the arm to different positions and making certain measurements, which are
later used in equations to extract the desired parameters.

Measurements

Joint angle measurements.- As a point of reference for joint angle measurements,
define 6, =0 (i= 1, 2, ..., 6) for the initial position of the robot arm shown in
figure 1.l Thereafter, these joint angles are referenced to this initial zero
position.

World coordinates.- The world reference axis system indicated in figure 2 is an
arbitrarily fixed axis system. For example, the origin of this axis system may be
located at the corner of a flat table upon which the robot arm is stationed, or the
world axis system may correspond to the axis system of a laser transit or a camera.
With respect to this world axis system, the rectangular coordinates (xw,yw,zw) of the
point F 1in figure 2 are obtained. The point F 1is located arbitrarily on some
extension of the robot hand so that when a rotation occurs, by varying a joint angle
ei, the point F will move to another position in the world coordinate space. It is
not necessary to know the length or orientation of the extension.

The robot arm is moved to different positions by varying its joint angles. At
each new position, the joint angles ei are available from sensors in the robot arm
itself, whereas the location of point F 1is actually measured by using external
measurement devices (sensors). It is assumed that measurements of joint angles ei
and corresponding world coordinates of point ¥ are available for the robot arm in
different positions for this analysis. Before proceeding, the axis systems to be

established are described.

Joint Axis Systems

Figure 3 illustrates the axis systems associated with joints i and i + 1. By
convention, joint 1 1is associated with the coordinate system i - 1. Hence,
joint i corresponds to the axis system with origin at Oj-1qr whereas joint i + 1
corresponds to the other axis system with origin 0;. By definition, the axis of
rotation for joint 1 always lies along the associated Zi_1° The vector 3i is
the normal vector between Zi—1 and Zs being directed toward Z;. The inter-
section point of 31 with Z; locates the origin 0;. The axis X5 originates
from O; in the same direction as 3i’ In the event that Zi-1 and Z. intersect
(fig. 3(b)), 3. is the zero vector, and X; 1is then directed from this intersec-
tion in the direction of the cross product obtained by+mu1tiplying a unit vector
along Zi_q by a unit vector along Z;. The vector r, is the vector from the
origin 0;_4 to the intersection of ;i with Z;_4 (fig. 3(a)); for intersecting
lines of rotation, r, is a vector along Z2; from O,_ to 0, (fig. 3(b)). The
angle a, 1s the angle between a line parallel to Z; 1 througﬁ the origin 03
and Z;, being measured positive about positive X; (fig. 3). Finally, the joint
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angle 9; is the angle between X, , and a line parallel to X; through 0;.¢ and

is measured positive about positive Zi-1 (fig. 3). The axes Y; and Yi_ 1+ which
simply complete right-hand axis systems, are not shown for clarity.
The lengths of Z_ and ?i are denoted by a; and . The relative joint
]
parameters a;, r;, and a; and the joint angle Gi are referred to as the
Denavit-Hartenberg parameters (ref. 2) and completely characterize the relative joint

geometry.

Basic coordinate transformation.- The relative joint geometry dictates the basic
transformation equations between adjacent joints. The coordinates of a point
Q(x,y,2) with respect to the coordinate system i in figure 3 can be transformed to

coordinates of @ with respect to the coordinate system i - 1 by the relation:
X x
Y . y
i
z =R 2 (1)
179, 11,
i-1 i
with
- v v ] I l_
cos 0, -cos a, sin O, sin a, sin 0, I a, cos 8,
i i i i i | i
1
1
1 L} L} ' ]
. sin 6, cos o, cos 0, ~-sin o, cos 6, | a, sin 0,
al - i i i i i i (2)
i-1 !
|
0 sin ¢, cos « | ri
i
__________________ I
0 0 0 ' 1
where A?_ is the homogeneous transformation matrix from coordinate system i to
i -1 (ref. 4, for example). This basic transformation matrix, whose elements are

defined by the Denavit-Hartenberg parameters, is used in controlling a robot arm and
in transforming sensor signals along the arm.

T
Relationship between joint angles ei and ei.- If the convention in figure 3

were used to define axis systems for the robot arm in figure 1, tbe joint angles
would be ei (i =1, 2, ¢+s, 6). In general, the joint angle ei is not equal to
the joint angle 6,, which is referenced to the initial condition of the robot arm in
figure 1. At this time, Oi is measurable, but 6; is not measurable because Fhe
axis systems have not yet been established. Corresponding values of Gi and 91



result from application of the subsequent parameter extraction equations, and if

required, a nonlinear relationship could be formed. However, most often, this func-
tional relationship is adequately described by the linear equation:

8; = 8; + By : (3)

1
where f. is a constant bias, reflecting an initial offset in Oi. Hence, if a
calculated value of ei corresponds to a measured value of ei, then Bi is calcu~
lated by using these values in equation (3).

Problem Statement

Given the world coordinate system in figure 4, let the location of the point
O0;.4q and the direction of X._ be known. Now, with joint angles ei and corre-
sponding locations of point F (fig. 2), calculate the Denavit-Hartenberg param-
eters ajr 0y, and Ty, and the joint angle ei. Furthermore, find the origin 0i
of the next axis system, which is located somewhere on the dashed line for Wipqr and
the direction of X,. The process is then repeated to establish subsequent axis
systems. To initiate the process, use the origin O, and the direction of Xw
which are specified.

Circular Trajectory of Point F

In figure 2, let 91 vary and the remaining ei be fixed. Then, the point F
on the robot arm will generate a circular trajectory about ZO' In general, as Gi
varies, the point F will generate a circular trajectory about Zi-1’ For a value
of ©0,, the location of point F 1in world coordinates can be measured (for example,

see appendix A).

Center of circular trajectory.- Figure*S shows the circular trajectory of
point F _ caused by changing ei (where Hwiﬂ is the time derivative of ei). The
vector Pi(k) gives the position of F in world coordinates when ©6; has the value
9;(k), where %k has been introduced to label corresponding data._ The center of the
circular trajectory in figure 5 is given by the constant vector C,. The components
of this vector are computed by forming the dot product: *

> > > > 2
(P (k) —C ) « (P, (k) -C,) =p, (4)
i i i i i
which can also be expressed as
> > > >
C *P (k) + K =P (k) « P (k)/2 (5)
i i i i i

IS
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where

> > 2
K, = -(ci ~C - pi)/Z (6)

is a constant.

Equation (5) represents k +1inear equations in four unknowns: Ki and the
three components of the vector Ci. Four different position vectors (ﬁ.(k),
i

k =1, 2, 3, and 4) are sufficient to provide enough equations for the solution of
these constants. Thus, a robot arm with 6 rotational joints would require 24
position measurements (4 for each of the 6 joints). Each position vector is made up
of three components, representing a point in the world coordinate system (xw,yw,zw).
In actual situations, where sensor errors are present, more measurements will be
needed to allow least-squares estimates of the constants.

Once the vector Ei and the scalar K; are found, the radius of the circle is
given by equation (6), written as

0 =\IE. - &+ 2k, (7)

> . .
Unit vector ui.— Figure 6 shows the circular trajectory of point F and two

position vectors ;i(k) and Ei(k+1), along with the incremental joint angle
AB, (k) = O, (k+1) - 0 (k) (8)
i i i

between these position vectors. A unit vector normal to the plane of the circular
trajectory and passing through point Cy (whose coordinates are the components of
the vector Ci) is

N [_f'i(k) - Ei] x [fi(k+1) - Ei]
w, (k) = > (9)

Py




With 0 < AB.(k) < =, 3,(k) in equation (9) is in the same direction as the rota-

. ->
tional vector ;. An average u; over M vectors

s
S

a, (k) (10)

H
b3 N
'—l

k=1

should be used to reduce the effects of errors in actual measurements.

Lines of Rotation and Transverse Vector

Figure 7 shows lines of rotation for joints i and i + 1. BAny point on the
line of rotation for joint i 1is representable by the vector line equation

> > >
L =3 + A u (11)
1

Likewise, any point on the line of rotation for joint i + 1 is described by

¥

> >
3 = C, + A u, (12)
i+1 i+1 i+1  i+1

. > . .
Define a transverse vector v, between these lines of rotation as
i

> > >
v. = X _ - R (13)
i i+1 i

. . e > > > .
X = - 3 = -
Parallel lines of rotation (ui ui+1 0; ui ui+1 i1) First of all,

coincident lines of rotation for consecutive joints are not of interest because these
joints are effectively one and not distinguishable. Therefore, in figure 7, for

parallel lines,

(914

& 20 (14
i+1 i )



For parallel lines of rotation, the point F in figure 2 generates circular trajec-
tories in figure 7 which lie in the same plane; therefore,

> >
v, =C - C, (15)

is normal to these lines and has a length equal to their distance of separation.
Equation (15) is equation (13), with Ai = Ki* = 0. Relocate 3; so that its ini-
tial point is the known location of the origin 0;_.¢1 on the line of rotation for

joint i; that is,

>* e
% =R, (16)
i i-1

_’
where R;_4 is the vector from tke world axis system to Oi-1 (fig. 8). Then, the
corresponding terminal point of v, on the line of rotation for joint i + 1 is

>% >% >%
2, =R + v, (17)
i+1 i i

In effect, equation (16) reflects the assignment of ?, = (0 to parallel lines of
rotation. .

Skew lines of rotation.- If the lines of rotation in figure 7 are not parallel,

let A; and A;+1 be those values of xi and A, in equations (11) and (12),

+
respectively, which make 3i in equation (13) noréai to the lines of rotation.

*
Denote this vector 3i by 31. Then,

v, = &, - L, (18)
i i+1 i
where
>* > * »>
X, = C, + A, u, (19)
i+1 i+1 i+1 i+1



and

>%* > * >
A o=cC + A u (20)
i i i 1i

*
are the intersection points of 31 with the lines of rotation. By definition of

*
3&, two orthogonality conditions are

(21)

and

e 0 (22)

Equations (21) and (22) can be solved simultaneously for the scalar values k; and

A;+1 to get

i1
(23)

and

> > > \>
N -(Ei+1 - Ei) (8,04 = (854 4 )85 ] (24)
i1 > > 12
T Gy - 5

where, for skewed lines, (3,
i+1

10




Relative Joint Geometry
> >
In figure 8, S, and R, represent position vectors in world coordinates where
i i

;i intersects the lines of rotation for joints i and i + 1. Thus,

> >k
s = R, (25)
i i
> >k
R, = & (26)
i i+1
*
a =v, (27)
i i
> > >
r =8 -R (28)
i i i-1
The direction of X; 1is chosen to be either in the direction of Gi x Gi+1 or

Zi. Conditions for these options are shown in table I and are dependent on the rela-

tionship between consecutlve lines of rotation. Correspondingly consistent equations
for determining 9 and ai are shown in table II.

L]
Equation for tan e;.— All the equations for tan ei in table II have similar

explanations; therefore, only consider

. -—
tan 0, = ——1 2 z (29)
i ->

The numerator term in equation (29) shows the cross product of a vector 31

along x -1 and a vector Zi along Xy and then forming the dot product of the
result and a unit vector u, along 239 Produces Hil L H3 I sin 9 w1th the
correct sign for a positive rotation about positive 25 7 for equlvalently u Yo
The denomina?or is Hg 1" Hglﬂ cos 9;.' Hence, the fraction represents tan ei,
where 0 < O, < 27. The jOlnt angle Bi in equation (29) corresponds to the fixed
position of joint i after u:L has been determined and joint i + 1 is being

varied to obtain ﬁ_ .
i+1

11



Tan a with X; in direction of Ei.- The appropriate equation in table II is

+
a,
> > ill» >
- 30
tan « (wy xua, 40 * 0 Uy % (30)
i

The right~hand side of this equation shows the cross product of a vector along

2.9 (or Ji) and a vector along 2; (or Gi+1) and then the dot product of this

> > . . R
result and a unit vector along Xj (or ai/ﬂaiﬂ) gives sin @, - The dot product in
the denominator yields cos a, -

Tan ai with Xi in direction of Gi X ﬁi+1 when consecutive lines of rotation

intersect.~ Figure 9 shows the unit vector Ei+1 along Z;. the unit vector Ei
along a line parallel to Z;_.q+ and the angle a; between these two vectors. A unit

vector defined by

i+1 (31)

establishes the direction of X;. Hence,

= (32)

is the ratio of sin ai to cos @, - Or, equivalently,
_)
ha, xua, 1
i i+1 (33)
+
u

tan a, =
i

which is shown in table II.

12
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Calibration of Joint Angles

The joint angle Bf can be calibrated as follows. After p051tiona1 data
f (k) are obtained forlvarlatlons in the joint angle ei, let 9 be the fixed
value of 0. when the next positional data +1(k) are collected for variations in
9 1", Moreover, let (ei) be the value of 0, that 1s computed with the poiltlonal
data in the parameter eXtraction procedure. Then, (6 y* corresponds to 0.. If
the functional relationship between Gi and ei is the linear equation (3), then

_ Tk Nk
B, = (8))* - o} (34)

L}
Thereafter, with this value of Bir equation (3) gives ei for different values of
6, -
i

Extraction of the Denavit-Hartenberg parameters allows the definition of joint
axis systems for the robot arm, such as those depicted in figure 10. The procedure
in this analysis applies not only to robot arms but also to other jointed mecha-
nisms. In addition, errors are not propagated. Although only rotational joints are
discussed in the text, translational or sliding joints are easily handled as indi-
cated in appendix B.

CONCLUDING REMARKS

A vector-algebra method is developed to extract the relative joint geometry
{(Denavit-Hartenberg parameters) of a robot arm or other jointed mechanisms. The only
measurements required are the locations of a point on the robot hand for different
joint angles. A minimum of four locations (i.e., world coordinates for four loca-
tions of the point) is required; however, more points should be used to reduce the
effects of measurement errors. The robot arm is positioned by changing a set of
joint angles (which are referenced to an arbitrarily specified zero position), and
then the location of a point on the robot hand is measured with respect to a fixed
world axis system (which is also arbitrarily specified). These positions and joint
angles are used in equations to extract the relative joint parameters. More specifi-
cally, trajectories generated by a point on the robot arm (circular trajectory for
rotational joints and line trajectory for sliding joints) and obtained by individual
joint movements provide sufficient information to determine unit vectors along the
lines of rotation or translation and to subsequently extract the Denavit-Hartenberg
parameters.

This method for extracting relative joint geometry of robot arms will be useful
to researchers who need these data for existing robot arms for either validation of
mathematical models or for studies involving the actual control of these devices.
This method, which does not require the robot arm to be disassembled, may also be
useful in the recalibration of a misaligned or bent robot arm and, if sufficiently
accurate, could become a useful industrial procedure. A merit of the method is that
errors are not propagated.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 11, 1983
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APPENDIX A

WORLD COORDINATES OF POINT F BY SINGLE SIGHTING DEVICE

The symbols used in this appendix are defined as follows:

d distance from origin of world axis system to point F

F point associated with robot arm; center of sphere

Kt Your 2y world coordinates

YeYqrYs elevation angles of sighting device

Ynax elevation angle such that if line of sight is lowered sufficiently, it will
pass through center of sphere

Pq known sphere radius

¢ azimuth angle of sighting device

The parameter-extraction method presented in the text uses the world coordinates
of a point F on the robot arm as input data. There are several ways to gather this
information, with some ways being more accurate than others.

A technique which might be useful in obtaining the world coordinates of a

point F 1is shown in figure A1. Since point F is somewhat arbitrary, consider it
to be the center of a sphere of known radius pg, on an extension that is held by the
robot hand. For reference, an arbitrary reference point is selected so that when it
is sighted, the azimuth angle ¢ and elevation angle <y of the transit are con-
sidered to be zero. Now, ¢ is increased by changing vy until a line-of-sight
tangent to the sphere is produced at y = y,. With ¢ constant, y is then reduced
to y =% which corresponds to the other line-of-sight tangent. The desired eleva-
tion angle Yy, is the maximum elevation angle Y., which exists as ¢ 1is
increased, as indicated in figure A2. With these line-~of-sight angles, the distance

to point F is

P
s (a1)

(Y2 T Yy
Sln_z—"

and the world coordinates are

Yot Y
zw =d sin(—l————2> (a2)

14




APPENDIX A

o
I

Y, tv
d cos(—l———z) sin ¢

w 2
it Y
xw = 4 cos — cos ¢

No measurements were made to ascertain the accuracy of this measurement
technique.

(n3)

(a4)

15



Line-of-sight
tangent lines

Sphere on extension
attached to robot hand
Vs
Q
@
O
r
|

Sighting device

Arbitrary reference point
b =0; v =0)

Figure Al.- Using sighting device to obtain world coordinates (xw'yw'zw) of
point F located at center of sphere being held by robot hand.
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Line-of-sight
tangent lines

Circumferential surface
of sphere

Sighting device

Arbitrary
reference point
(Y = 0; vy =20)

Figure A2.- Illustration of maximum elevation angle for line-of-sight tangent
line to spherical surface.
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APPENDIX B

RELATIVE JOINT GEOMETRY FOR SLIDING JOINTS

In the text, primary emphasis is placed on rotational joints; however, the same
basic analysis holds for slldlng joints (extendable segments). Let r, be the
extension variable and 9 i+1 be a constant for joint i + 1 in the ro%ot arm.
Measuring locations of a point F on the robot arm for two dlfferent extensions
(? 1(k), where k = 1 and 2) gives two points on a line. Let P (1) correspond

(1) and §i+1(2) correspond to ;. = ;. (2), where

to the extension r =
i+1 i+1

i+1 r1+1

-)
ur (2)“ > Hri+1(1)u. Then, instead of the unit vector in equation (9), the unit

vector is

(1)
1 (B1)

(1)"

1(2) -

=24

> >

P P
iv1 - = >
P P,

I 1+1(2) -

Furthermore, instead of the line equation (12), the new line equation is

(B2)

(=R 4

_)
1 = Bt A 95y

The remaining steps in the parameter extraction are the same as in the text.

The line of extension represented by equation (B2) can be shifted, if desired,
to pass through some chosen point; for example, the Pi+1(1) in the equation can be

. This makes the a; terms in equation (2) equal to zero for slid-

+
replaced by Ri i

-1

ing joints (ref. 5).

18
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TABLE I.- DIRECTION OF Xi

Consecutive 15, x 3o 0l & . .
i i Direction of X.
lines of rotation i 7 7im 1 tr i
Do not intersect and #0 #0 Either Ei X 3i+1 or 31
not parallel
> >
Intersect but not #0 0 u; X Uy 41
parallel
Parallel but 0 #0 31
separated
Coincident lines are 0 0 Excluded

excluded




X4

L
TABLE II.- CONSISTENT TANGENT EQUATIONS FOR ai AND ei

| Direction Previously defined direction of X,
| i-1
. of current ! e > S
: : u, X u, a,
xl ] i=-1 i i-1
]
1
] > > > > > > > > >
‘ u, xu,} x (u, xu, e\, a, X {u, u, u,
> > | ' [( i-1 1) ( i 1+1)] ! [ i-1 ( i 1+1)] i
u, X U g | tan ei = o S e 3 tan Si = e 3 Y
i a, Xu,j * . u, a, e lu, X u,
1 ] ( i-1 1) ( i 1+1) i-1 ( i 1+1)
I |
[/ !l
> > > >
lu, x u, Il la, x u, I
i i+1 i it+1
tan o, = tan a, =
1 > > 1 > . 1—;
, *u, u, ,
i i+1 i i+1
> > > > > > >
. [(u, , xu,) xa,] e, , (a, . xa,) +nu,
> N 6 i=1 i i i tan 6 = i-1 i i
a; an 8, = > e Y an 6, = o ’y
(u. X u.) * a, a, s a,
i-1 i i i-1 i
> >
> > a4 > > > > a, > >
tan a, = (u. u, ) i u, * u, tan o, = (u. X u, ) . = | u, u,
i i i+1 > i i+t i i i+1 > i i+1
ﬂaiH Haiﬂ




22

Wrist motions

Figure 1.- Robot arm with rotational joints.

.~ Shoulder

Initial position.




Measurement point

Deflected extension
attached to robot
end effector

World reference
axis system

4
w

Figure 2.~ World axis system and robot arm with extension for measurements.
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(b) Intersecting lines of rotation.

Figure 3.- Consecutive joint axis systems and relative joint geometry.



O
%

_)
Figure 4.- Illustration of world axis system, vector R. , and direction of X5
for problem statement. Dashed lines represent unknown 'lines of rotation for

consecutive joints.
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Figure 5.~ Circular trajectory of point

Circular trajectory of point F

F about line of rotation for joint

i.



e+

Figure 6.~ Unit vector in same direction as joint rotational vector.
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Figure 7.~ Lines of rotation for consecutive joints and transverse vector.
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Figure 8.~ Composite figure showing geometry involved in parameter-
extraction method.
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Figure 9.~ Geometry illustrating X5 defined in direction of Q; X Q349




Figure 10.- Robot arm with axis systems.
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